Investigador em astrobiologia e endosimbiose inauguram uma hipótese muito provável acerca da evolução da vida na Terra
Sustentabilidade

Investigador em astrobiologia e endosimbiose inauguram uma hipótese muito provável acerca da evolução da vida na Terra


Published By Matt

Humans might not be walking on Earth today if not for the ancient fusing of two microscopic, single-celled organisms called prokaryotes, NASA-funded research has found.

By comparing proteins present in more than 3000 different prokaryotes – a type of single-celled organism without a nucleus – molecular biologist James A. Lake from the University of California at Los Angeles’ Center for Astrobiology showed that two major classes of relatively simple microbes fused together more than 2.5 billion years ago. Lake’s research reveals a new pathway for the evolution of life on Earth. These insights are published in the Aug. 20 online edition of the journal Nature.

A schematic diagram illustrating the prokaryotic ring of life. The actinobacterial genome donor, at the left (blue), and the clostridial genome donor, at the right (yellow), transfer their genomes to form the doublemembrane prokaryotes at the top of the ring (green). The protein family data identify the Actinobacteria and the Clostridia as donors, and the doublemembrane prokaryotes as the fusion organism.

A schematic diagram illustrating the prokaryotic ring of life. The actinobacterial genome donor, at the left (blue), and the clostridial genome donor, at the right (yellow), transfer their genomes to form the doublemembrane prokaryotes at the top of the ring (green). The protein family data identify the Actinobacteria and the Clostridia as donors, and the doublemembrane prokaryotes as the fusion organism.

This endosymbiosis, or merging of two cells, enabled the evolution of a highly stable and successful organism with the capacity to use energy from sunlight via photosynthesis. Further evolution led to photosynthetic organisms producing oxygen as a byproduct. The resulting oxygenation of Earth’s atmosphere profoundly affected the evolution of life, leading to more complex organisms that consumed oxygen, which were the ancestors of modern oxygen-breathing creatures including humans.

“Higher life would not have happened without this event,” Lake said. “These are very important organisms. At the time these two early prokaryotes were evolving, there was no oxygen in the Earth’s atmosphere. Humans could not live. No oxygen-breathing organisms could live.”

The genetic machinery and structural organization of these two organisms merged to produce a new class of prokaryotes, called double membrane prokaryotes. As they evolved, members of this double membrane class, called cyanobacteria, became the primary oxygen-producers on the planet, generating enough oxygen to alter the chemical composition of the atmosphere and set the stage for the evolution of more complex organisms such as animals and plants.

“This work is a major advance in our understanding of how a group of organisms came to be that learned to harness the sun and then effected the greatest environmental change Earth has ever seen, in this case with beneficial results,” said Carl Pilcher, director of the NASA Astrobiology Institute at NASA’s Ames Research Center in Moffett Field, Calif., which co-funded the study with the National
Science Foundation in Arlington, Va.

Founded in 1998, the NASA Astrobiology Institute (NAI) is a partnership between NASA, 14 U.S. teams, and six international consortia. NAI’s goals are to promote, conduct, and lead interdisciplinary astrobiology research, train a new generation of astrobiology researchers, and share the excitement of astrobiology with learners of all ages. The Astrobiology Institute is part of NASA’s Astrobiology Program. The Astrobiology Program supports research into the origin, evolution, distribution and future of life on Earth and the potential for life elsewhere.






loading...

- Scientists Reverse Engineer Plants To Make Hydrogen Fuel From Sunlight
Image Credit / Wikimedia In the search for clean, green sustainable energy sources to meet human needs for generations to come, perhaps no technology matches the ultimate potential of artificial photosynthesis. Bionic leaves that could produce energy-dense...

- Symphony Of Science - 'the Unbroken Thread' (ft. Attenborough, Goodall, Sagan)
[David Attenborough] All life is related And it enables us to construct with confidence The complex tree that represents the history of life Our planet, the Earth, is as far as we know Unique in the universe; it contains life Here plants and animals...

- Darwin: Conferência Proferida Por Prof. Vane Wright
Ciclo de Conferências - 200 anos de Darwin Conference: "Organisms can be proud to have been their own designers"—organismal intelligence and the origin of design in nature Prof. R.I. Vane-Wright Durrell Institute of Conservation and...

- Vírus Do Borna Entra No Genoma De Muitos Mamíferos, Incluindo Genoma Humano
ScienceDaily (Jan. 8, 2010) About eight percent of human genetic material comes from a virus and not from our ancestors, according to researchers in Japan and the U.S. The study, and an accompanying News & Views article by University...

- A Genomic Encyclopedia Of Bacteria And Archaea (geba) And The Search For The Dark Matter Of The Biological Universe
Author JONATHAN EISEN, Ph.D. Professor UC Davis Genome Center Section of Evolution and Ecology College of Biological Sciences Dept. of Medical Microbiology and Immunology School of Medicine website | Blog Microbial Genomics Description: There is a...



Sustentabilidade








.